使用RK3588的NPU进行Yolo-V5推理

YOU Only Look Once--

BUT I Look for Many Times

使用RK3588NPU进行Yolo-V5推理

下载通过Google Drive

前言:

RK3588提供了6Tops的计算性能,能够很好的进行Yolo-v5的推理,本文参考了官方的实例,对代码结构进行简化,增强了可读性,便于初学者的理解。

环境配置:

  1. 安装下载适合python版本的whl

  2. 安装项目依赖:

    pip install opencv-python

    pip install PyQt

  3. 下载转换好的rknn模型

推理流程

初始化

  1. 使用Python工具调用推理的api

    1
    from rknnlite.api import RKNNLite

  2. 初始化推理对象

    1
    rknn = RKNNLite()

  3. 加载模型

    1
    2
    yolo = rknn.load_rknn('./rknn/yolov5m_leaky.rknn')
    yolo = rknn.init_runtime(core_mask=RKNNLite.NPU_CORE_0_1_2) # 使用所有的NPU核心

进行推理

使用rknn.inferience(input=[img])接口进行推理

编写推理逻辑

读取待处理文件

1
2
3
import cv2
cap = cv2.VideoCapture(path)
ret, frame = cv2.read()

处理输出信息

  • 推理的结果包含着255个不同维度的信息,分别包含了锚框的坐标信息、置信度分数、识别的物体类别,因此,可以将多维度分解为3个batch,使得输出boxes, scores, class有足够的信息

    1. 筛选锚框:

      • 使用对象抑制,筛选掉置信度低的锚框——去除识别错误的物体

        1
        2
        3
        4
        5
        6
        7
        8
        9
        10
        11
        12
        13
        def filter_boxes(boxes, box_confidences, box_class_probs, ObjectThreshold=0.25):
        box_confidences = box_confidences.reshape(-1)
        class_max_score = np.max(box_class_probs, axis=-1)
        classes = np.argmax(box_class_probs, axis=-1)

        confidence = np.multiply(class_max_score,box_confidences)
        _class_pos = np.where(confidence >= ObjectThreshold)
        scores = confidence[_class_pos]

        boxes = boxes[_class_pos]
        classes = classes[_class_pos]

        return boxes, classes, scores

      • 使用NMS抑制,筛选出识别同一个物体效果最好的锚块

        1
        2
        3
        4
        5
        6
        7
        8
        9
        10
        11
        12
        13
        14
        15
        16
        17
        18
        19
        20
        21
        22
        23
        24
        25
        26
        27
        28
        def nms_boxes(boxes, scores, NMS_THRESH=0.45):
        x = boxes[:, 0]
        y = boxes[:, 1]
        w = boxes[:, 2] - boxes[:, 0]
        h = boxes[:, 3] - boxes[:, 1]

        areas = w * h
        order = scores.argsort()[::-1]

        keep = []
        while order.size > 0:
        i = order[0]
        keep.append(i)

        xx1 = np.maximum(x[i], x[order[1:]])
        yy1 = np.maximum(y[i], y[order[1:]])
        xx2 = np.minimum(x[i] + w[i], x[order[1:]] + w[order[1:]])
        yy2 = np.minimum(y[i] + h[i], y[order[1:]] + h[order[1:]])

        w1 = np.maximum(0.0, xx2 - xx1 + 0.00001)
        h1 = np.maximum(0.0, yy2 - yy1 + 0.00001)
        inter = w1 * h1

        ovr = inter / (areas[i] + areas[order[1:]] - inter)
        inds = np.where(ovr <= NMS_THRESH)[0]
        order = order[inds + 1]
        keep = np.array(keep)
        return keep

  1. 连接模块,将推理结果转化为信息,返回boxes shape=(n x 4)classes shape=(n x 1)scores shape=(n x 1)

    流程:

     1. 输入255维度,转化为`3*85`
     2. 前4个维度预测锚框的坐标,第5个维度预测置信度分数,后面的维度用于进行类别预测

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    import numpy as np
    from . import Tools
    from . import generateBox

    default_anchors = np.array([ 10., 13., 16., 30., 33., 23., 30., 61., 62., 45., 59., 119., 116., 90., 156., 198., 373., 326.])
    default_anchors = default_anchors.reshape(3,-1,2).tolist()

    def post_process(input_data, anchors=default_anchors):
    boxes, scores, classes_conf = [], [], []
    # 1*255*h*w -> 3*85*h*w
    input_data = [_in.reshape([
    len(anchors[0]),-1]+
    list(_in.shape[-2:]))
    for _in in input_data]
    for i in range(len(input_data)):
    boxes.append(generateBox.box_process(input_data[i][:,:4,:,:], anchors[i]))
    scores.append(input_data[i][:,4:5,:,:])
    classes_conf.append(input_data[i][:,5:,:,:])

    def sp_flatten(_in):
    ch = _in.shape[1]
    _in = _in.transpose(0,2,3,1)
    return _in.reshape(-1, ch)

    boxes = [sp_flatten(_v) for _v in boxes]
    classes_conf = [sp_flatten(_v) for _v in classes_conf]
    scores = [sp_flatten(_v) for _v in scores]

    boxes = np.concatenate(boxes)
    classes_conf = np.concatenate(classes_conf)
    scores = np.concatenate(scores)

    # filter according to threshold
    boxes, classes, scores = Tools.filter_boxes(boxes, scores, classes_conf)

    # nms
    nboxes, nclasses, nscores = [], [], []

    for c in set(classes):
    inds = np.where(classes == c)
    b = boxes[inds]
    c = classes[inds]
    s = scores[inds]
    keep = Tools.nms_boxes(b, s)

    if len(keep) != 0:
    nboxes.append(b[keep])
    nclasses.append(c[keep])
    nscores.append(s[keep])

    if not nclasses and not nscores:
    return None, None, None

    boxes = np.concatenate(nboxes)
    classes = np.concatenate(nclasses)
    scores = np.concatenate(nscores)

    return boxes, classes, scores

  2. 可视化展示

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    import time
    import cv2
    import numpy as np
    from . import OutputPredict
    CLASSES = ("person", "bicycle", "car","motorbike ","aeroplane ","bus ","train","truck ","boat","traffic light",
    "fire hydrant","stop sign ","parking meter","bench","bird","cat","dog ","horse ","sheep","cow","elephant",
    "bear","zebra ","giraffe","backpack","umbrella","handbag","tie","suitcase","frisbee","skis","snowboard","sports ball","kite",
    "baseball bat","baseball glove","skateboard","surfboard","tennis racket","bottle","wine glass","cup","fork","knife ",
    "spoon","bowl","banana","apple","sandwich","orange","broccoli","carrot","hot dog","pizza ","donut","cake","chair","sofa",
    "pottedplant","bed","diningtable","toilet ","tvmonitor","laptop ","mouse ","remote ","keyboard ","cell phone","microwave ",
    "oven ","toaster","sink","refrigerator ","book","clock","vase","scissors ","teddy bear ","hair drier", "toothbrush ")
    def video_predict(path,rknn):
    cap = cv2.VideoCapture(path)
    while cap.isOpened():
    start_time = time.time()
    ret, frame = cap.read()
    if not ret:
    break
    output = rknn.inference(inputs=[np.expand_dims(frame, axis=0)])
    boxes, classes, scores = OutputPredict.post_process(output)
    end_time = time.time()
    fps = 1 / (end_time - start_time)
    if boxes is not None and classes is not None and scores is not None:
    classes_out = [CLASSES[i] for i in classes]
    scores_out = [f"{_ * 100:.1f}%" for _ in scores]
    for box, text_cl, text_sc in zip(boxes, classes_out, scores_out):
    box = box.astype(int)
    x1, y1, x2, y2 = box
    text = f"{text_cl}, {text_sc}, FPS:{fps:.1f}"
    frame = cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
    cv2.putText(frame, text, (x1, y1-10),
    fontFace=cv2.FONT_ITALIC,
    fontScale=0.5, color=(0, 0, 255),
    thickness=1)
    cv2.imshow('Output', frame)

    if cv2.waitKey(1) == ord('q'):
    break
    cap.release()
    cv2.destroyAllWindows()

项目演示

  • 据说RKNN的Python接口性能优化不好,NPU性能无法完全调用,双路推理不足20帧,还有很大的优化空间,目前完成度仅限使用了NPU

  • 查看NPU占用

    1
    watch -0.5 cat /sys/kernel/debug/rknpu/load

    NPU占用


使用RK3588的NPU进行Yolo-V5推理
https://blog.potential.icu/2024/03/12/2024-3-12-使用RK3588的NPU进行Yolo-V5推理/
Author
Xt-Zhu
Posted on
March 12, 2024
Licensed under